

(ng)Next Generation VLA とは? ・アメリカが中心となっている 大型干渉計プロジェクト SKAよりも高周波, ALMAよりも低周波帯をカバー

ngVLAについて http://ngvla.nrao.edu https://science.nrao.edu/futures/ngvla

2018/10/17,18に

ngVLAで何ができるかを検討した資料がastro-phにたくさん上がってた

以下の2つのchapterを紹介

 Star-forming Filaments and Cores on a Galactic Scale(<u>https://arxiv.org/abs/1810.06701</u>) Deuteration in starless and protostellar cores (<u>https://arxiv.org/abs/1810.07163</u>)

ngVLA

Arizona

100 km

Preliminary ngVLA Antenna Configuration*

0 O

Chihuahua

Gal

000

¢ 0

Ø

600 to 000

Ø

Or

0

0

个カバーする周波数範囲

Array configuration \rightarrow

The ngVLA is envisioned as an array of 214 fixed antennas, each 18m in diameter and outfitted with front ends spanning 1.2 - 50.5 and 70 - 116 GHz. The array achieves high surface brightness sensitivity and high fidelity imaging on angular scales from ~ 1000 to 10 mas by having a large collecting area fraction randomly distributed in the compact array core, spiral arms extending out to 36km for snapshot imaging, and long baseline stations extending asymmetrically to ~1000km baselines that fill the (u,v)-plane with Earth rotation and frequency synthesis. A short baseline array of 19 antennas, each of 6m diameter, recovers large scale structure and a total power capability is under evaluation.

Ø

0

Ó

Fexas

ngvla.nrao.edu

Evolution of molecular clouds to protostars

Star-forming Filaments and Cores on a Galactic Scale

James Di Francesco¹, Jared Keown², Rachel Friesen³, Tyler Bourke⁴, and Paola Caselli⁵

アンモニア, NH3 分子輝線でフィラメント状分子雲の力学状態観測する

アンモニアの観測について アンモニア輝線からの物理量の導出方法はここにあるよ http://www.juen.ac.jp/lab/tosaki/kyouzai/radio/NH3/NH3.html 要は、1回の観測で、分子雲の 速度分布,光学的厚さ,温度,柱密度を一気に求めることができる 臨界密度は10³⁻⁴ cm⁻³程度=>CO(10²⁻³ cm⁻³)輝線とN₂H+輝線(10⁴5 cm⁻³)の間を埋める存在

24 GHz帯はALMAでは観測できない周波数帯

アンモニア観測の例

フィラメント状分子雲をトレース(e.g., GBT 33"の観測) =>HerschelやJCMT望遠鏡のダストの観測は力学状態がわからない

(Keown et al. 2018)

どれくらいの観測時間でできるか?

Number of Antennas (1 km maximum baseline)

10' x 10' を4"の分解能で観測するのに必要な時間の見積もり

Deuteration in starless and protostellar cores

Rachel K. Friesen¹, Maria T. Beltrán², Paola Caselli³, and Robin T. Garrod⁴ 重水素化合物の観測で分子雲コア進化を明らかにしましょう

Molecule	Transition	Rest Frequency
		(GHz)
$o-CH_2D^+$	$1_{1,0}$ - $1_{1,1}$	67.273
p-NHD ₂	$1_{1,1}$ - $1_{0,1}$	67.842
$D^{13}CO^+$	1 - 0	70.733
DCO^+	1 - 0	72.0393
D ¹³ CN	1 - 0	71.175
DCN	1 - 0	72.415
CCD	1 - 0	72.108
$DN^{13}C$	1 - 0	73.368
DNC	1 - 0	76.306
N_2D^+	1 - 0	77.109
HDO	$1_{1,0}$ - $1_{1,1}$	80.6
o-NH ₂ D	$1_{1,1}$ - $1_{0,1}$	85.928
p-NH ₂ D	$1_{1,1}$ - $1_{0,1}$	110.15
CH ₂ DOH	Multiple	67 - 95

Table 1.: Prominent transitions of deuterated molecules between 60 and 115 GHz

ターゲットなる分子種の多くは60-70 GHz帯に存在する

進化段階

分子雲コアで起こるCOのdepletion と重水素濃縮について

太陽系や星間空間でのD/H: 10⁻⁴~10⁻⁵ 分子雲コアでのD/H: >0.1 => 星間空間と数桁存在比が異なる!!

その理由は?

1. 分子雲コアが<mark>低温</mark>(<20K)であること 2. 分子雲コアが高密度(>10⁴cm⁻³)であること

 $H_3^+ + HD \rightleftharpoons H_2D^+ + H_2 + \Delta E$ 発熱反応なので、低温では逆反応が起こらない

H₃+は様々なCOとよく反応するが、 高密度環境下ではCOは星間塵に吸着 (depletion)される (e.g., L1544)

高密度で低温な環境(星形成直前)ほど重水素 濃縮度が上がると予想されるため、分子雲コア の進化の指標となる(e.g., Caselli+02)

分子雲コアL1544のダスト連続波(コン トア)と分子輝線の分布 (Caselli+99) COはdepletionするが、 N系分子はしにくい

Dec (J2000)

Uniqueness to ngVLA Capabilities

- 60-70 GHzを観測できる干渉計,単一鏡は歴史的にあまりなかった NOEMAはこれからできるようになるが感度が全然違う
- ALMA Band 2/3受信機は可能になる 感度/分解能ともにngVLAの方が良い ~a few tens of au の分解能が達成できる
- => 個人的にはALMA で十分のようにも思う

今日のまとめ

ngVLAはALMAよりも
 高い分解能(低周波数)
 感度を達成可能

- NH₃輝線で
 フィラメント状分子雲の力学状態を知る
- 重水素化合物で
 分子雲コアの非常に密度の高い場所を観測